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Abstract

Direct stimulation of the cortical surface is used clinically for cortical mapping and modulation of 

local activity. Future applications of cortical modulation and brain-computer interfaces may also 

use cortical stimulation methods. One common method to deliver current is through 

electrocorticography (ECoG) stimulation in which a dense array of electrodes are placed 

subdurally or epidurally to stimulate the cortex. However, proximity to cortical tissue limits the 

amount of current that can be delivered safely. It may be desirable to deliver higher current to a 

specific local region of interest (ROI) while limiting current to other local areas more stringently 

than is guaranteed by global safety limits. Two commonly used global safety constraints bound the 

total injected current and individual electrode currents. However, these two sets of constraints may 

not be sufficient to prevent high current density locally (hot-spots). In this work, we propose an 

efficient approach that prevents current density hot-spots in the entire brain while optimizing 

ECoG stimulus patterns for targeted stimulation. Specifically, we maximize the current along a 

particular desired directional field in the ROI while respecting three safety constraints: one on the 

total injected current, one on individual electrode currents, and the third on the local current 

density magnitude in the brain. This third set of constraints creates a computational barrier due to 

the huge number of constraints needed to bound the current density at every point in the entire 

brain. We overcome this barrier by adopting an efficient two-step approach. In the first step, the 

Corresponding author: Seyhmus Guler, seyhmus.guler@childrens.harvard.edu. 

HHS Public Access
Author manuscript
Neuroimage. Author manuscript; available in PMC 2019 June 01.

Published in final edited form as:
Neuroimage. 2018 June ; 173: 35–48. doi:10.1016/j.neuroimage.2018.01.088.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



proposed method identifies the safe brain region, which cannot contain any hot-spots solely based 

on the global bounds on total injected current and individual electrode currents. In the second step, 

the proposed algorithm iteratively adjusts the stimulus pattern to arrive at a solution that exhibits 

no hot-spots in the remaining brain. We report on simulations on a realistic finite element (FE) 

head model with five anatomical ROIs and two desired directional fields. We also report on the 

effect of ROI depth and desired directional field on the focality of the stimulation. Finally, we 

provide an analysis of optimization runtime as a function of different safety and modeling 

parameters. Our results suggest that optimized stimulus patterns tend to differ from those used in 

clinical practice.
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1. Introduction

Electrocorticography (ECoG) uses electrode arrays surgically implanted on the cortical 

surface. ECoG arrays are primarily used to localize seizure onset in patients with intractable 

epilepsy and to localize brain function (e.g., motor and language) to guide surgical resection 

[1], [2]. Stimulation through ECoG electrode arrays, typically through a bipolar electrode 

stimulation configuration, is done to target an underlying region of interest (ROI) which 

requires specificity of current delivery [3]. ECoG stimulation is used clinically as a 

therapeutic tool in an attempt to reduce seizures [4], neuropathic pain [5], to support 

recovery and plasticity in stroke in primates [6] and humans [7], and to provide sensory 

feedback for bidirectional brain-computer interfaces [8], [9]. These stimulation applications 

all require focal delivery of current to a specified ROI. Thus in addition to limitations fixed 

by safety consideration to avoid tissue injury, undesired but avoidable current delivered 

outside the ROI would limit flexibility of application.

ECoG stimulation can provide improved spatial specificity compared to scalp electrodes 

since the stimulation electrodes are placed directly on the cortical surface [10]. Proximity of 

the electrodes to the cortex, without the intervening attenuation from the skull and blurring 

from the full cerebrospinal fluid (CSF) layer, suggests enhanced ability to control currents 

across the grid to provide much more precise targeting of ROIs within the tissue. However, 

placing the electrodes directly on the cortical surface increases safety concerns since the 

proximity of electrodes to brain tissue also means unsafe current density could easily be 

delivered to active brain tissue [11]. Thus, there is a need for algorithms to design stimulus 

patterns for safe and effective current delivery to the ROI. In this work, we address this issue 

by proposing an optimization method to find a subject- and ROI-specific ECoG current 

injection pattern that maximizes the directional current in the ROI while satisfying 

constraints regarding subject safety, specifically in terms of bounding local current density 

everywhere in the brain.

To the best of our knowledge, the literature on optimization of electrode stimulus patterns 

for cortical stimulation is scarce. Kim and colleagues used computational models to 
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investigate the influence of certain stimulation and modeling parameters such as stimulation 

amplitudes, electrode configuration, and white matter conductivity specifications [10], [12]. 

Numerous methods to localize subdural electrodes have been proposed by Pieters and 

colleagues [13] but the authors considered only measurement electrodes and did not 

introduce methods to apply and optimize stimulation from the same set of electrodes. In 

contrast, several previous studies have proposed and solved analogous optimization 

problems for targeted transcranial stimulation using scalp electrodes [14]–[20]. In [20], 

Wagner and colleagues provide an in-depth analysis of mathematical models for multi-

electrode tCS optimization, which they solve using an ADMM approach while ensuring 

subject safety via global and local constraints. Our work here starts from a method designed 

to optimize transcranial stimulation, but includes a novel approach to allow constraints on 

local current density while retaining computational efficiency.

Specifically, in these previous reports, two constraints were typically considered to protect 

subject safety; both the total injected current and all individual electrode currents were 

bounded by predefined limits [21]. In [19], our group introduced a third constraint, on the 

total current magnitude in the brain outside the ROI, allowing us to directly maximize 

directional current in the ROI with a well-specified constraint. We compared our approach 

with several others in the literature, as well as providing freely available software 

implementations of all approaches we studied [19]. However as we have already 

emphasized, these three safety constraints may not be sufficient in the case of ECoG 

stimulation. There is still a concern that optimized patterns will cause local current density 

maxima that exceed a desirable threshold and potentially harm the subject. We will refer to 

such undesirable maxima as “hot-spots” in what follows.

In this work we propose and test an efficient extension of our existing algorithm to optimize 

targeting of ROIs with ECoG stimulation, adding safety constraints to prevent such hot-spots 

across the entire brain. Specifically, the proposed algorithm maximizes the current density 

along a user-defined directional field in a user-defined cortical ROI while satisfying three 

safety constraints: (1) on the total injected current, (2) on individual electrode currents, and 

(3) on the local current density magnitude everywhere in the brain. We note that this 

approach shares the same objective function and first two safety constraints with our original 

optimization approach for scalp electrodes [19]. The third set of constraints, on the local 

current density magnitude in the brain, was added in response to the additional concerns 

raised when using ECoG arrays.

The main barrier to be addressed in this work is the computational complexity imposed by 

this new family of constraints, which we call “hot-spot constraints”. A straightforward 

approach would be to simply impose an additional hot-spot constraint for each small region 

in the brain. However achieving reasonable locality of these constraints, say on the order of 

1 mm3 volumes, would require checking millions of constraints. This makes this naive 

approach unscalable. Instead, we describe here a novel and efficient two-step approach that 

selectively adds hot-spot constraints. In the first step we use simple bounds based on the first 

two safety constraints (i.e. the safety constraints imposed on the total injected current and 

individual electrode currents) to identify a safe brain region that cannot contain hot-spots as 

long as those two constraints are satisfied. It turns out that this step typically reduces the 
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total number of hot-spot constraints by about two orders of magnitude. However this still 

leaves too many hotspot constraints to be computationally tractable, so in our second step we 

apply an iterative approach that selectively adds constraints in an efficient manner and is 

guaranteed to converge to an optimal solution. This second step typically reduces the 

original problem to one with at most a few thousand constraints, enabling us to compute the 

optimal ECoG stimulus patterns within seconds on a modern computer.

We report on tests of our method using simulations based on a realistic finite element (FE) 

head model with five anatomical cortical ROIs and two desired directional fields for each 

ROI. We assess the effect of ROI depth, desired directional field, and the threshold value for 

maximum allowable current density magnitude in the brain on the optimal patterns as well 

as on the convergence rate of the proposed optimization algorithm.

One interesting result from our simulations is that the resulting optimal stimulus patterns 

generally differ considerably from the “standard” bipolar (i.e. adjacent pair of electrodes 

from the ECoG grid) and monopolar (i.e. one electrode from the ECoG grid with a distant 

reference electrode used as the return) configurations used in clinical practice [22], [23], 

which suggests that the proposed method may have the potential to increase the capabilities 

of ECoG stimulation. The optimal stimulus patterns also appear to be sensitive to the 

anatomy of cortical folding patterns directly under the array, making prediction of optimal 

patterns without a sophisticated optimization method rather difficult.

The rest of the paper is organized as follows. In Section 2, we describe the proposed 

optimization approach in detail followed by a description of the simulation setup. Section 3 

reports on our analysis of safe brain region, presents an exemplary optimization result for 

one of the ROIs, and then summarizes the optimization results for all five ROIs. In Section 

4, we discuss our findings and potential future directions. We provide detailed results for all 

five ROIs in Appendix.

2. Methods

In this section, we first give an in-depth description of the optimization approach we 

devised. We introduce the objective function and the three sets of constraints employed to 

ensure subject safety. We then provide details of our two-step approach, outlined above, to 

solve this optimization problem. We conclude this section by describing the computer 

simulations we carried out to evaluate our method along with some details about the 

computational head model we employed.

2.1. Optimization problem

The objective function and first two constraints we adopt here are identical to those used in 

our previous work on transcranial stimulation [19] and we reprise them here only briefly. 

Specifically, the objective function is defined as the current density along a predefined 

desired directional field e in the ROI [19]:
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max
I ΩROI

(J(r) · e(r))dr, (1)

where J represents the current density, e denotes the desired directional field with unit 

magnitude, ΩROI stands for the ROI volume, I is the array (organized as an L×1 column 

vector, L being the total number of electrodes) of electrode currents to be determined by the 

optimization, r is the position vector, and · is the vector dot product. We direct the reader to 

[19] for a detailed comparison between this choice of the objective function and two other 

choices frequently encountered in transcranial brain stimulation optimization.

The first two safety constraints imposed on the total injected current, and on each individual 

electrode current are formulated as [19]:

‖I‖1 ≤ 2stot (2a)

‖I‖∞ ≤ sind (2b)

where ‖·‖1 denotes the 1-norm, and ‖·‖∞ is the infinity-norm. In words, (2a) ensures that the 

total current entering the head is bounded by stot, and (2b) ensures that each individual 

electrode current magnitude is bounded by sind.

The third set of safety constraints replaces the constraint on total current power in the brain 

outside the ROI that we used in our transcranial stimulation optimization in [19]. This set of 

constraints forces the current density magnitude in a set of arbitrarily small volumes in the 

brain, indexed here by p, to be below a pre-determined, and possibly location dependent, 

bound:

‖Jp‖2 ≤ dp ∀p ∈ Ωbrain, (2c)

where ‖·‖2 denotes the 2-norm, dp is the threshold value for the current density magnitude in 

volume p in the brain, and Ωbrain represents the brain domain. Note that in our 

implementation we will take the elements to be finite element tetrahedra used in our 

calculations, but the formulation is more general here.

We note that the optimization problem introduced and solved by Wagner and colleagues in 

[20] for multi-electrode tCS targeting has several similarities and some important differences 

with the formulation presented here. First, the two objective functions are the same; the only 

difference between them is introduced in the development of [20] when additional 

Lagrangian terms are added. Second, the two methods share constraints on the total injected 

current and local current density magnitude but our constraint on each individual electrode is 
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absent in [20]. Third and most importantly, the two groups take substantially different 

approaches to reformulate their corresponding optimization problems to solve them in a 

computationally tractable fashion. Wagner et al. introduce L1 and L2 regularization terms in 

their objective function to penalize high current levels at the electrodes and sparsify the 

solution, and then employ the alternating direction method of multipliers (ADMM) to solve 

for the electrode current values after selection of Lagrange multipliers and other 

hyperparameters. In contrast, we employ a two-step approach where we first remove a 

subset of redundant hot-spot constraints using an upper bound analysis on the current 

density and then apply an iterative approach to solve the reduced problem in a 

computationally efficient manner. Thus two approaches differ in terms of computational 

complexity and how the optimization is handled at the implementation level.

In order to solve the optimization problem in (1) and (2), the transfer function between the 

current density J and electrode current array I needs to be known. As in [19], we use a linear 

finite element (FE) solver applied on a realistic head model to find this relationship. In our 

FE model, the head domain is discretized into small volume elements and the current density 

of the m’th volume element1 is approximated as a linear function of the potential at the 

nodes of that element, which we can then write as a linear function of the electrode current 

array:

Jm = AmI . (3)

Am is a 3×L matrix, which represents a subset of the FE solution that maps the array of 

currents injected through the electrodes to the current density of m’th volume element. The 

constraint (2c) can then be represented with a finite set of constraints on the brain volume 

elements:

‖Jm‖2 ≤ dm ∀m ∈ Ωbrain
discretized . (4)

For a realistically discretized human head, the number of volume elements in the brain is 

usually on the order of tens of millions. Thus, as already noted, imposing (4) directly will 

introduce an intractable computational burden. However, it seems reasonable to expect that 

this constraint may be redundant for volume elements sufficiently far (electrically) from the 

ECoG electrodes. Based on this intuition, we developed a set of bounds to quickly identify 

and eliminate a large majority of those redundancies, using the head model and the first two 

constraints (2a) and (2b). Specifically we calculate mathematical upper bounds on the 

current density magnitude anywhere in the brain, as we describe next.

2.2. Removing redundant hot-spot constraints

For each m’th volume element in the brain, we calculate four different upper bounds on the 

current density magnitude based on safety constraint bounds stot and sind, using the 

1We emphasize that we are using a discrete array of volume elements and replace p in (2c) with a finite element index m.
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appropriate subset of the head model in (3). These four upper bounds are (see Appendix A 

for details):

U1: ‖Jm‖2 ≤ 2‖Am‖1stot (5a)

U2: ‖Jm‖2 ≤ 3‖Am‖∞sind (5b)

U3: ‖Jm‖2 ≤ 2‖Am‖2stot (5c)

U4: ‖Jm‖2 ≤ L‖Am‖2sind (5d)

where the norms on the right hand side of the inequalities are induced matrix norms.

Based on these bounds we can easily check if the threshold value dm at a particular brain 

volume element m is higher than any of these four upper bounds U1-4. If it is, we conclude 

that under these conditions (under the assumptions of the head model and for the specified 

safety constraint bounds stot and sind) it is mathematically impossible for the current density 

of that particular brain element to exceed dm for any feasible current injection pattern. Thus, 

we do not need to explicitly impose (4) on that element as it is already guaranteed to meet 

that constraint. Note that it is sufficient for an element to have any of its respective four 

upper bounds, which depend on its particular relationship to the current-injecting electrodes, 

be smaller than dm for it to be safe, even if it does not satisfy the other bounds. Thus the 

overall safe region is the union of safe regions determined by each bound separately. We 

identify the elements in the remaining brain region, which we will call critical region in the 

sequel, and pass them on to step two of the algorithm, which we describe next.

2.3. Iterative approach to solve the reduced problem

Even though a large majority of volume elements can be determined to be safe using the 

upper bounds described above (in our experiments we reduced the number of elements 

needing explicit handling by around two orders of magnitude), we are typically left with 

hundreds of thousands of hot-spot constraints for the remaining critical region, too many to 

be tractable to impose jointly. Thus, we devised an iterative approach in which at each 

iteration we select a subset of hotspot constraints that are violated in the previous iteration, 

reoptimize with those constraints added, and repeat the process until the added hot-spot 

constraint set is sufficient to prevent the occurrence of hot-spots in the entire critical region.

To start, an initial solution is found using solely the two safety constraints (2a) and (2b). At 

each succeeding iteration, the algorithm checks the feasibility of the current solution with 
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respect to the hot-spot constraints (4), and selects some of the violated hot-spot constraints 

to add to the current optimization problem if there are elements where that constraint is 

violated. The optimization is then carried out with the expanded constraint set and the 

process is repeated. The algorithm terminates once a solution that satisfies all the hot-spot 

constraints on all volume elements is reached. The termination of the algorithm is 

guaranteed, in a worst case scenario, after each mesh element in the critical region is 

constrained, but our experience is that many fewer constraints are needed to find a feasible 

solution.

The pseudo-code for this iterative approach is provided in Algorithm 1, with the notation 

explained below in Table I:

Algorithm 1

Iterative approach to find stimulus pattern with no hot-spots in the critical region.

C ← Ø

Solve OP(C)

H ← Violated hot-spot constraints

while H ≠ Ø do

  Hs ← A non-empty subset of H

  C ← C ∪ Hs

  Solve OP(C)

  H ← Violated hot-spot constraints

end while

To solve OP(C) at each iteration of Algorithm 1 we use CVX, a package for specifying and 

solving convex programs [24], [25]. We note that OP(C) has a global and unique optimal 

solution at each iteration2, which allows us to solve the problem using a generic convex 

optimization solver. After an optimal solution is found, the current density magnitude in the 

critical region is computed to find all or a subset of the violated hot-spot constraints. In order 

to further speed up the algorithm, at intermediate iterations the algorithm only checks part of 

the critical region to choose a subset of violated hot-spot constraints and advance to the next 

iteration. In particular, it calculates the current density magnitude only for the elements on 

the cortical surface of the critical region. Once a solution that creates no hot-spots on the 

cortical surface of the critical region is found, it then proceeds to calculate the current 

density in the entire critical region at subsequent iterations, to identify hot-spots that might 

still occur in the volume. If there are such hot-spots, they are added as constraints in the next 

iteration, and if not, the algorithm terminates.

2.4. Simulation setup

In our simulations, we used a realistic head model with eight modeled tissue layers (scalp, 

skull, cerebrospinal fluid (CSF), gray matter (GM), white matter (WM), eye, internal air, and 

2OP(C) is a convex problem regardless of which brain volume elements are included in the hot-spot constraint set C. More 
specifically, the objective function in (1) becomes a linear function of electrode current array and the local hot-spot constraints in (4) 
turn into quadratic constraints after domain discretization [19].
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insulating ECoG sheet), each assigned a scalar conductivity value [19]. A 6×8 ECoG grid 

with 1 cm inter-electrode distance was positioned on top of the left motor cortex, as shown 

in Figure 1. The head model was refined around the ECoG grid where the highest current 

density magnitude is most likely to occur. The electrodes were modeled as point electrodes 

represented by a set of FE mesh nodes.

We defined five anatomical ROIs with different depths, as shown in Figure 1. For each ROI, 

the radial desired directional field was based on the local cortical surface normal, and the 

tangential desired directional field was based on the plane tangential to the cortical surface3. 

The desired directional field clearly varies across the ROI volume due to the folded structure 

of the cortex however this change is smooth since the brain surface mesh itself was 

smoothed using a Laplacian filter. (We note that our definition of ‘radial’ and ‘tangential’ 

desired directional fields is based on the local structure of the cortex rather than the inner 

skull layer, which has been frequently used to define orientation in the source localization 

and non-invasive brain stimulation communities [17], [20], [26]–[28]).

The bound for the total injected current was set to 2 mA and individual electrode currents 

were bounded by 0.5 mA, for all cases, based on current levels reported in the literature [3]–

[6]. The threshold for hot-spots was set to 2.5 A/m2 for all brain elements outside the ROI. 

There were no constraints on the current density in the ROI, which rather was maximized 

along the desired directional field.

3. Results

Section A below reports on results on our analysis of safe and critical brain regions. Section 

B illustrates an exemplary optimization result for one of the ROIs with radial desired 

directional field. Section C presents summary results for all five cortical ROIs and two 

desired directions. In section D, we assess the effect of the threshold value for current 

density magnitude on the size of the critical region, as well as the optimal objective function 

value, and report on the runtime (computational time cost) of the algorithm for the 

simulations reported on here.

3.1. Safe vs. critical brain regions

Figure 2 shows safe and critical regions identified by each of the upper bounds U1-4 in (5), 

as well as the overall critical region determined by using all four bounds together. The gray 

color on each panel represents the safe brain region that cannot have current density 

magnitude higher than 2.5 A/m2, given that the total injected current is bounded by 2 mA 

and each individual electrode current is bounded by 0.5 mA. Thus, the green region is the 

critical brain region over which one needs to iteratively add hot-spot constraints to ensure its 

safety. It can be seen that different upper bounds identify different parts of the brain as safe; 

for example, the bound (2a) guarantees that frontal areas and almost the entire right 

hemisphere are below the specified safety threshold value, whereas the bound (2b) ensures 

that the region around the left posterior corner of the ECoG grid is below the threshold. 

3There are infinitely many different vectors on the plane tangential to the cortical surface; here the vector with zero component in 
superior-inferior direction was chosen as the desired tangential directional field for each volume element.
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Sulci and gyri beneath the grid are generally included in the critical region but not always 

gyral walls, a reflection of the difficulty of “steering” the current to gyral walls because of 

their orientation with respect to the ECoG grid. The unique contribution of each of the upper 

bounds on the safe region is summarized in Table II.

Overall, in this simulation and with the given electrode current limits and current density 

constraint, 97.10% of the entire brain was identified as safe using this upper bound analysis. 

The results show that for the given simulation setup, the bounds U1 and U2 had the 

dominant effect while the upper bound U3 did not contribute to defining the overall safe 

region as it was consistently larger than the bound U4. We note that the overall safe region is 

not equal to the sum of the four unique volumes identified by each bound because a 

significant part of the brain volume is identified as safe by more than one bound.

3.2. Exemplary results for one ROI with radial desired current direction

In this section we report on detailed results for one of the ROIs tested, and for the radial 

desired directional field. Results for all remaining cases are summarized in the sequel and 

included in detail in Appendix B. The ROI we report on is the one shown in purple in Figure 

1, which we refer to as gyral ROI throughout the rest of the paper. In Figure 3 we visualize 

in detail the iteration-wise optimal stimulus patterns, the identified locations that violate the 

hot-spot constraint, and the corresponding current density fields. Each row corresponds to 

the results from one iteration. For each iteration the left column shows the critical area, the 

optimal stimulus pattern (mapped onto the electrode locations using the colormap shown) 

and the hot-spots found at tested locations. (Recall that we only test surface locations until 

those locations are all sufficiently constrained, and then include depth locations that still 

violate the constraint.) The middle column shows the current density magnitude on the 

cortical surface and indicates tested hot-spots highlighted with black contours. A thin white 

contour is drawn around the ROI to highlight its boundary; we kept this contour very thin 

not to block the current density magnitude visualization around the ROI. By imposing 

additional constraints on the hot-spots identified at previous iteration, the optimal current 

injection pattern shifts to employ other electrodes to prevent those hot-spots. This shift may 

in turn create new hot-spots, which if detected are then included in the constraint list in the 

next iteration. For this particular ROI and desired directional field, the algorithm terminates 

after iteration 4 as there are sufficient hot-spot constraints to prevent any hot-spot in the 

entire critical region. The number of detected hot-spots were 4047, 692, 178, and 0, at 

iterations 1, 2, 3, and 4, respectively. Note that since the ROI is excluded from the hot-spot 

constraints and the main goal is to maximize the directional current in the ROI, the current 

density in the ROI could be, and usually is, higher than the chosen threshold value. To 

illustrate the effect of different current injection pattern on volumetric current flow, the 

rightmost column in the figure visualizes current streamlines through the brain. We note that 

for these visualizations, all the seed points for the streamlines are chosen from the brain 

tissue, in order to visualize only some of the current that goes through the brain. Indeed, 

more current is shunted through the CSF than enters the brain tissue, but we chose this 

visualization method to avoid visual clutter. We observe from these visualizations that 

changing the current delivery patterns leverages the fact that the current passes more easily 

through CSF to “steer” the current and thus avoid hot-spots.
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3.3. Summary of all the results for all ROIs

In order to assess the ability to affect the current flow in the ROI as a function of distance 

and desired directional field, we report the average current density along the desired 

orientation in the ROI as function of iteration in Figure 4 and the final values in Table III for 

more quantitative comparisons. We note that targeting ROI 2 (which is closer to the 

electrodes than ROI 3, 4, and 5) along the radial desired directional field is more difficult 

than targeting any of the other four remaining ROIs with respect to the same desired radial 

directional field. The average directional current density in the ROI drops with increasing 

depth for the other four ROIs. We also note that the average directional current density is not 

uniformly superior for one desired directional field than the other. These results suggest that 

the focality of the currents from a given stimulus pattern might depend on numerous factors 

such as specific anatomy, the electrode placement, the ROI depth, and the desired directional 

field.

Runtimes on a modern desktop computer (running Matlab code with no special attention to 

sophisticated efficiency methods) versus the total number of hot-spot constraints for all ROIs 

and all iterations are plotted in Figure 5. The figure suggests a linear relationship between 

runtime and number of constraints. We note that the runtime of a single iteration with about 

a thousand hot-spot constraints is in the range of a few seconds.

3.4. Effect of threshold value

To test the effect of the choice of safety threshold value we repeated the same set of 

calculations for four other thresholds. In Figure 6, we illustrate the five different critical 

regions found using the threshold values dm = 0.5, 1.5, 2.5, 3.5, and 4.5 A/m2. The critical 

regions for these threshold values were determined to be 14.06%, 5.18%, 2.90%, 1.82%, and 

1.15% of the entire brain volume, respectively.

If the critical region is larger in size, we would expect the optimization problem to take 

longer to solve as a bigger portion of the brain needs to be evaluated for hot-spots. Figure 7 

shows the runtime as a function of the number of constraints for five critical region volumes 

derived from different threshold (dm) values, for the gyral ROI and radial desired directional 

field. (Recall that we used the same ROI and desired directional field in section 3.2 to 

present exemplary results of our approach.) The runtime consistently increases with the size 

of the critical region and presumably as a consequence the average number of hot-spot 

constraints increases. Specifically, the number of hot-spot constraints and consequently the 

runtime in iterations for the case of dm = 0.5 A/m2 are significantly higher than that of the 

other four cases.

Figure 8 shows the optimal objective function value at each iteration for all five threshold 

values, for above mentioned gyral ROI and radial desired directional field. Since there are no 

hot-spot constraints in the first iteration, the optimal objective function value is the same for 

all cases. Once the first set of hot-spot constraints are added at the 2nd iteration, an optimal 

value close to the final solution is obtained. The succeeding iterations manipulate the current 

injection pattern to eliminate hot-spots but barely influence the objective function value. 
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Note also that the difference between the objective function values for dm = 4.5 A/m2 and dm 

= 3.5 A/m2 is relatively low compared to other threshold pairs.

4. Discussion

In this computational study, we developed and solved an optimization problem to optimize 

stimulus patterns for ECoG stimulation, with the capability of preventing any local current 

density hot-spot in the entire brain. We introduced an efficient two-step approach that first 

identifies and discards unneeded hot-spot constraints in regions guaranteed to be below a 

safety threshold based on norm bounds derived from the global constraints, and then, 

iteratively adds hot-spot constraints on the remaining brain to further reduce the computation 

time. Our simulation results on a realistic head model showed that it is possible to prevent 

hot-spots across the entire brain, of course at the cost of reduced focality, directionality, and 

intensity in the target structures (Fig. 4).

Our results suggest that a significant portion of the brain tissue is not at risk of receiving 

high amplitude current density given that both total injected current and each individual 

electrode current are bounded. We also found that the complicated interactions among 

electrode locations, cortical folding, and conductivity differences (in particular the shunting 

effect of CSF) suggest that it may be possible to achieve non-obvious concentration of 

directional current in a chosen small ROI, while maintaining a bound on current outside that 

ROI even in adjacent areas, by utilizing electrode current patterns that can be determined by 

careful optimization. Our two-step computational approach, with the second step 

implemented in a greedy fashion to add hot-spot constraints iteratively, still finds fully 

feasible optimal solutions and allows the algorithm to run on standard hardware with no 

fine-tuned implementation required and with relatively small computational cost.

Our simulation results suggest that the optimal current stimulus patterns are dependent on 

many factors in addition to the ROI location with respect to cortical folds and electrode grid 

placement and anatomical details. These include the highest allowable current density 

magnitude in the brain and the desired direction for the current density in the ROI. It has 

also been shown that the type of the stimulation (voltage vs current controlled stimulation), 

electrode configuration (paddle-array vs single), the conductivity specifications of white 

matter (isotropic vs anisotropic) play a crucial role in the success of current delivery to the 

ROI [10]. Various ad hoc methods to localize electrode positions based on not only the 

visual cues but also the cortical structures have been proposed by Pieters and colleagues 

[13]. Moreover it is certainly feasible to design electrode arrays with electrode sizes, array 

pitch, and even shape/design of the electrodes themselves, different from the standard ECoG 

array modeled here [29]. Finally, optimal current stimulus patterns are typically not sparse 

due to hot-spot constraints. However sparse solutions could be achieved by additional 

constraints on the number of current sources or by introducing an L1 regularization term in 

the objective function [20], [30]. The complex interaction between all these design 

parameters and the head anatomy encourages computational models and sophisticated 

optimization methods even more.
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We emphasize that the methods presented here could be directly extended to other brain 

stimulation modalities, e.g. to reduce localized high current densities on the scalp, and thus 

minimize discomfort (itching, tingling sensations) due to electrode edge effects4 [31] in 

transcranial current stimulation using large numbers of small scalp electrodes. Moreover, 

threshold values could be adjusted locally to maximize specificity of the stimulation, for 

example in an attempt to maximize the current in the hand area of the motor cortex with 

minimal current in the leg area. The approach could also be applied to different intracranial 

configurations such as depth electrodes or stereoEEG configurations [32], [33]. Similarly, 

the proposed method may also be applicable to prevent current density hotspots outside the 

desired volume of tissue activated (VTA) in multielectrode deep brain stimulation (DBS) 

applications [34].

In the work reported here, we used a common upper bound of 0.5 mA for each individual 

electrode current. This can be readily generalized to the case where each electrode current 

has its own upper and lower bound. In that case, the safety constraint in (2b) needs to be 

replaced with a safety constraint that allows for independently controlled lower and upper 

bounds on each individual electrode current:

Il ≺ I ≺ Iu, (6)

where the operator ‘⪯’ stands for ‘element-wise less than or equal to’, Il and Iu are the arrays 

of lower and upper bounds on individual electrode currents. We note that all the upper 

bounds in (5) are still valid if we simply replace sind with max(‖Il‖∞, ‖Iu‖∞) in (5b) and 

(5d).

The dose of a stimulation protocol is based on multiple factors, including the stimulation 

waveform (e.g. direct current (DC), alternating current (AC)) and duration. Since we use a 

quasi-static formulation with a resistive model of both tissue and electrodes, and only 

consider instantaneous current levels, waveform shape and duration did not play a role in our 

simulations. Optimizing for stimulus duration requires further assumptions about the 

stimulation waveform as well as tissue capacitance characteristics, which are beyond the 

scope of this report. If safety concerns require optimizing over stimulation duration as well, 

one possible direction would be to derive safety limits for the total injected charge, which is 

often considered as another safety metric along with the local current density magnitude 

[11], [35]–[37]. Since the total injected charge is a function of electrode currents, stimulation 

duration, and waveform, imposing a safety constraint on the total charge would also require 

these additional modeling steps. Charge constraints would effectively trade off stimulation 

duration for higher electrode current intensities. In any case, to the best of our knowledge it 

remains unclear how critical each metric is in terms of subject safety. In particular in the 

simulations reported on here we set the threshold current density magnitude to 2.5 A/m2 

based on the literature on safety limits for injected current density to prevent brain injury in 

transcranial stimulation [38].

4The current density is not uniformly distributed across the electrode-scalp interface and is larger at the electrode edges than in the 
center.

Guler et al. Page 13

Neuroimage. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The approach we adopted here to reduce the total number of constraints is based on four 

upper bounds on the current density magnitude in the brain, which were derived from matrix 

and vector norm inequalities. These bounds are likely to be quite loose in practice. An 

alternative formulation, which would in principle achieve the highest feasible current density 

magnitude at a particular point in the brain, would be to formulate the entire problem as a 

constrained maximization. That is, instead of using possibly very loose upper bounds at each 

point, one could find the tightest upper bound for the current density magnitude via a 

maximization problem. This problem, however, is computationally challenging as it is non-

convex, and guarantees of optimality could be difficult or impossible to obtain. Our bound 

approach performed satisfactorily in the work described here, in the sense that it generally 

allowed us to remove about 95% of the brain volume before engaging in iterative, and more 

expensive, FEM-based optimization calculations.

In a continuous domain, assuming that there are no interior current sources, Laplace’s 

equation states that the divergence of the current density is zero at any interior volume point: 

∇ · J = 0. This implies that the highest current density magnitude in a tissue layer occurs on 

the surface, not at an interior point. This encouraged us, at the implementation level, to 

check for, and prevent, hot-spots on the cortical surface first, and only after all the surface 

element constraints were satisfied search the remaining critical brain volume for potential 

hotspots. The need to also check the interior brain elements, despite the theoretical 

consideration just noted, is because errors due to discretization may produce unexpected 

effects and thus, although it is very unlikely, one might get a local hot-spot in the interior 

brain tissue rather than on the cortical surface solely due to the approximation errors in the 

head model. Thus to reduce the potential discrepancies between discrete model and 

continuous physical problem, we chose to add this additional step, which as we note had 

little added computational cost.

Perhaps the most important limitation, beyond those discussed above, has to do with 

potential impact of the head model on our results and conclusions. First, our isotropic head 

model was based on multimodal imaging data of a healthy subject and the ECoG sheet 

containing 48 nodal-based electrodes was registered onto the model via computer software. 

It is unclear how the craniotomy and the surgical procedure of planting cortical electrode 

grids on the cortex affects the model structurally and consequently the optimal stimulus 

patterns [39]; coregistration of preoperative and post-operative imaging data to generate 

accurate realistic head models is an on-going research topic [13], [39], [40]. We assigned 

scalar conductivity values to different tissue layers in the head model based on values 

reported in the literature; we note that it has been reported that different conductivity profiles 

for the head tissue could impact optimal stimulus patterns for transcranial stimulation [41]. 

Quantifying sensitivity to such model mismatch, as well as any compensatory algorithmic 

strategies that might be appropriate, is an important topic, and one that we are currently 

working on, but outside of the scope of this paper. Second, modeling of the dura mater and 

its thickness may change the current flow considerably depending upon whether the 

electrodes are placed epidurally or subdurally [10], [42], [43], and especially for the ROIs 

close to the inter hemispheric fissure, where the dura layer folds inside. Third, it has been 

reported that electrode number, size and shape might play an important role in the current 

Guler et al. Page 14

Neuroimage. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



flow in the head [10], [44], which is not fully addressed in this work. We modeled the ECoG 

electrodes as point electrodes in our simulations here; however more sophisticated electrode 

models (e.g. the complete electrode model [45]) could be employed to more realistically 

represent the electrode-tissue boundary if that relationship is known; for example we used 

the complete electrode model for the tCS work reported in [19]. Different electrode models 

and their impact on the current flow in the head have previously been studied in various 

reports (e.g. [46]). Finally, the sulcus width has been reported to have significant effect on 

the induced electric field in the brain for transcranial magnetic stimulation [47] and this is 

also a topic of current research [48], [49]. We may have overestimated the sulcus width in 

our head model simply due to the resolution limits of the imaging, and consequently our 

results for targeting deep brain regions may be too optimistic. Finite element modeling of 

transcranial current stimulation has been validated with experimental measurements on the 

scalp [50], [51] and recently also with implanted electrodes [52]. To our knowledge there 

have not been any studies validating stimulation models with ECoG electrodes. There is no 

obvious technical reason beyond the geometric modeling difficulties noted above to expect 

the modeling to be more or less accurate than with transcranial stimulation; nonetheless 

validation against invasive experimental measurements is currently under way in our group.

Despite these modeling limitations, the main point of this paper was to present methodology 

that makes optimization of cortical electrode arrays with carefully chosen safety constraints 

possible. The methods presented here are essentially independent of the structural and 

volume conduction models and thus should be directly applicable to more complicated head 

and electrode models. In other words, increased simulation model complexity does not pose 

any concern in terms of the proposed algorithms converging in reasonable computation time 

to a (model-dependent) globally optimal current injection pattern that creates no local hot-

spots in the brain tissue. However, we would like to reiterate here that optimal stimulus 

patterns might and most likely will differ from those reported here when different models 

and modeling parameters are used.

Finally, we firmly believe that the most critical need in terms of following up on this work is 

to validate our methodology with experimental measurements. We are actively pursuing 

such studies in phantoms, animal preparations, and humans.

5. Conclusion

This paper presents a novel and efficient approach to optimize stimulus pattern of ECoG 

electrode arrays, paying careful attention to the current density magnitude in the entire brain. 

The approach adopts a two-step algorithm to tackle the otherwise daunting problem of 

bounding the current density magnitude across the entire brain in a reasonably complex head 

model while optimizing the stimulus pattern for ECoG stimulation. We showed via computer 

simulations that both the ROI depth and the desired directional field are critical factors for 

both the amount of the directional current delivered to the ROIs and the optimal current 

pattern to apply, and the results seem to be sensitive to the bound imposed on the highest 

allowable current magnitude in the brain. We believe that the modeling and optimization 

methods presented here could help design stimulation protocols for many current, as well as 

emerging, cortical stimulation applications. In addition, these approaches could readily be 
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extended to the other brain stimulation modalities, both to identify the brain region that 

cannot contain hot-spots based on global safety constraints and also to prevent hot-spots in 

the remaining brain, the latter achieved by adapting our iterative optimization algorithm.
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Appendix A

Upper bounds on the current density magnitude in the brain

If A is a matrix of size M × L and x is a column vector of size L × 1, then the following 

inequalities hold for any A ∈ ℛM×L, x ∈ ℛL×1, and induced p-norm [53]:

‖Ax‖p ≤ ‖A‖p‖x‖p (A.1a)

‖x‖2 ≤ ‖x‖1 (A.1b)

‖x‖2 ≤ L‖x‖∞ (A.1c)

where ‖·‖p represents the (induced) p-norm, ‖·‖2 the 2-norm, ‖·‖1 the 1-norm, and ‖·‖∞ the 

infinity norm. Combining these inequalities with the two constraints (2a) and (2b) we 

calculate four different upper bounds on the current density magnitude at each volume 

element in the brain (note that the notation under the inequalities below refer to the equation 

number above that implies that step):

U1: ‖Jm‖2 ≤
(A.1b)

‖Jm‖1 =(3) ‖AmI‖1 ≤
(A.1a)

‖Am‖1‖I‖1 ≤
(2a)

2‖Am‖1stot (A.2a)

U2: ‖Jm‖2 ≤
(A.1c)

3‖Jm‖∞ =(3) 3‖AmI‖∞ ≤
(A.1a)

3‖Am‖∞‖I‖∞ ≤
(2b)

3‖Am‖∞sind (A.2b)

U3: ‖Jm‖2 =(3) ‖AmI‖2 ≤
(A.1a)

‖Am‖2‖I‖2 ≤
(A.1b)

‖Am‖2‖I‖1 ≤
(2a)

2‖Am‖2stot (A.2c)

U4: ‖Jm‖2 =(3) ‖AmI‖2 ≤
(A.1a)

‖Am‖2‖I‖2 ≤
(A.1c)

L‖Am‖2‖I‖∞ ≤
(2b)

L‖Am‖2sind . (A.2d)

Above, Jm is a 3×1 column vector representing the current density of the mth volume 

element, and Am denotes the 3×L matrix that maps, through the FE solutions, the L×1 

electrode current array I to the current density Jm. We note that second upper bound U2 has 

a 3 term due to applying (A.1c) on the current density vector Jm (L = 3). Also note that 
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fourth upper bound U4 depends on the total number of electrodes, which we left as a free 

variable L after applying (A.1c) on the electrode current array I.

Appendix B

All simulation results

We present optimization results for all five ROIs and both desired directional fields. Figures 

B.1, B.2, B.3, B.4, and B.5 present results for radial desired directional field and figures B.6, 

B.7, B.8, B.9, and B.10 for tangential desired directional field.

Fig. B.1. 
Optimization results for ROI 1, in radial direction.

Fig. B.2. 
Optimization results for ROI 2, in radial direction.

Fig. B.3. 
Optimization results for ROI 3, in radial direction.
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Fig. B.4. 
Optimization results for ROI 4, in radial direction.

Fig. B.5. 
Optimization results for ROI 5, in radial direction.

Fig. B.6. 
Optimization results for ROI 1, in tangential direction.
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Fig. B.7. 
Optimization results for ROI 2, in tangential direction.

Fig. B.8. 
Optimization results for ROI 3, in tangential direction.

Fig. B.9. 
Optimization results for ROI 4, tangential direction.
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Fig. B.10. 
Optimization results for ROI 5, in tangential direction.
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Fig. 1. 
Brain surface tessellation of the realistic head model used in the simulations. (Top) the 

placement of the 6×8 ECoG grid over the cortical surface, including five ROIs (ROI 1–

purple, ROI 2–blue, ROI 3–green, ROI 4–cyan, and ROI 5–pink) shown beneath the grid, 

and (bottom) a zoomed-in view of the five ROIs to highlight their locations relative to the 

closest electrodes on the grid. The ECoG sheet is shown with transparent salmon on the top 

panel and the point electrodes are represented with salmon spheres on both panels.
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Fig. 2. 
Critical (green) and safe (gray) regions of the cortical surface with a safety threshold of 2.5 

A/m2, based only on the four upper bounds U1-4 in (5), given the total injected current is 

bounded by 2 mA and individual electrode currents by 0.5 mA. Purple dots show ECoG 

electrode locations. Overall critical region in the bottom panel comprises elements not 

guaranteed to be safe by any of the four upper bounds U1-4.
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Fig. 3. 
Optimization results for gyral ROI and radial desired directional field, with each row 

showing results for one iteration. (Left) optimal stimulus pattern, as well as the critical 

region (dark gray), ROI (purple), and hot-spots (yellow). (Middle) the current density 

magnitude on the cortical surface, with hot-spots highlighted with black contours and ROI 

highlighted with a thin white contour. (Right) current streamlines through the brain tissue. 

As stated above the current shunted through the CSF is not shown to prevent visual clutter. 

The colorbars on the top row are shared across rows.
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Fig. 4. 
Average current density along the desired directional field in the ROI, for all five ROIs.
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Fig. 5. 
Runtime versus the number of hot-spot constraints at each iteration.
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Fig. 6. 
Critical regions for five different threshold values for the current density magnitude. The 

chosen threshold values were 4.5 (red), 3.5 (orange), 2.5 (green), 1.5 (light blue), and 0.5 

(blue) A/m2.
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Fig. 7. 
Runtime versus the number of hot-spot constraints at each iteration, for gyral ROI and radial 

desired directional field.
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Fig. 8. 
Objective function value at each iteration for different threshold values for hot-spots, for 

gyral ROI and radial desired directional field.
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TABLE I

Notation for algorithm 1

C A subset of constraints in (4)

OP(C) Optimization problem with the objective (1), and constraints (2), with hot-spot constraints only on set C

H Violated hot-spot constraints
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TABLE II

Percentage of brain volume jointly and uniquely identified as safe by each upper bound.

Overall safe region (%) Safe region uniquely identified by each bound(%)

U1 U2 U3 U4

97.10 0.73 0.30 0 0.03
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