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Abstract

Objective—Transcranial direct current stimulation (tDCS) aims to alter brain function 

noninvasively via electrodes placed on the scalp. Conventional tDCS uses two relatively large 

patch electrodes to deliver electrical currents to the brain region of interest (ROI). Recent studies 

have shown that using dense arrays containing up to 512 smaller electrodes may increase the 

precision of targeting ROIs. However, this creates a need for methods to determine effective and 

safe stimulus patterns as the degrees of freedom is much higher with such arrays. Several 

approaches to this problem have appeared in the literature. In this paper, we describe a new 

method for calculating optimal electrode stimulus pattern for targeted and directional modulation 

in dense array tDCS which differs in some important aspects with methods reported to date.

Approach—We optimize stimulus pattern of dense arrays with fixed electrode placement to 

maximize the current density in a particular direction in the ROI. We impose a flexible set of 

safety constraints on the current power in the brain, individual electrode currents, and total 

injected current, to protect subject safety. The proposed optimization problem is convex and thus 

efficiently solved using existing optimization software to find unique and globally optimal 

electrode stimulus patterns.

Main results—Solutions for four anatomical ROIs based on a realistic head model are shown as 

exemplary results. To illustrate the differences between our approach and previously introduced 

methods, we compare our method with two of the other leading methods in the literature. We also 

report on extensive simulations that show the effect of the values chosen for each proposed safety 

constraint bound on the optimized stimulus patterns.
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Significance—The proposed optimization approach employs volume based ROIs, easily adapts 

to different sets of safety constraints, and takes negligible time to compute. In-depth comparison 

study gives insight into the relationship between different objective criteria and optimized stimulus 

patterns. In addition, the analysis of the interaction between optimized stimulus patterns and safety 

constraint bounds suggests that more precise current localization in the ROI, with supposably 

improved safety criterion, may be achieved by careful selection of the constraint bounds.

1 Introduction

tDCS modulates brain activity noninvasively [1–5]. tDCS is of great current interest to 

support treatment of various brain disorders (stroke [6], epilepsy [7], Parkinson's Disease 

[8,9], depression [10,11], etc.). In other applications, tDCS has been successfully employed 

on healthy subjects e.g. to increase cognitive brain function [12–14].

Because tDCS uses electrodes placed on the scalp to inject current, it is difficult to precisely 

control the current flow in the head and brain in order to elicit the desired current density 

field in a remote target ROI. In particular, current delivery to the ROI is limited due to the 

shunting effect of the scalp and cerebrospinal fluid (CSF) [15, 16]. Moreover, simply 

controlling the magnitude of the current density in the ROI may not be sufficient to achieve 

a desired modulation outcome; current direction is also critical [1,17,18]. This introduces 

additional difficulties in achieving the desired level of control over the injected current. 

Finally, subject comfort and safety considerations require careful attention to prevent 

unintended consequences of current application on the scalp (e.g. skin burns, itching 

sensations) and in the brain (e.g. fatigue, headache, phosphenes) [4,19]. Thus, investigators 

and clinicians have been particularly interested in improving the precision of targeting in 

tDCS to efficiently utilize the current delivered to the brain and incur minimal adverse 

effects.

Conventional tDCS uses two relatively large (25-35 cm2 contact area) patch electrodes to 

deliver electrical currents to the brain ROI. One approach to improve targeting in 

conventional tDCS is to optimize the placement of these two patch electrodes. Optimal 

placement may change depending on whether maximum focality or directionality at the 

target ROI is desired [20]. When the goal is to maximize electric field strength at the target 

site, for example, ‘standard’ two patch electrode montages recommended for modulating 

cortical ROIs such as primary motor cortex (anode over the primary motor cortex - cathode 

above the supraorbital area [1,12]) and dorsolateral prefrontal cortex (anode at F3 - cathode 

above the supraorbital area [21]) are not necessarily optimal [20,22].

Another approach to increase the focality of the modulation over conventional tDCS is to 

use dense electrode arrays, consisting of a large number of smaller (1-2 cm2 contact area) 

electrodes instead of the conventional patch electrodes [23–27]. However, the availability of 

a large number of electrodes, with the ability to control individualized current to each, 

provides a dramatic increase in the number of degrees of freedom, and therefore it is 

important to devise systematic approaches to determine optimal current injection patterns 

with these dense arrays. In this work, we introduce, solve, and test an optimization problem 

whose solution finds optimal current injection patterns for dense array tDCS. To the best of 
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our knowledge, the only other systematic approaches on this subject are reported in [28–32]. 

Optimization problems introduced in these reports differ in various ways: optimization 

objective, safety constraints considered, and the methods used to find the stimulus pattern. In 

this paper we will describe our approach in detail, contrast it with two of the existing 

approaches, and present some detailed comparisons of current patterns optimized by each of 

the three methods. In addition, as we will describe, our own implementations of all three 

methods will be made freely available to enable further comparison by the tDCS community.

To summarize previous reports, Im and colleagues proposed a method to optimize two patch 

electrode positions, followed by an algorithm to determine the currents on a 4×4 electrode 

array that replaced the anode patch for higher focality at the target [22, 28, 29]. Their 

approach does not necessarily provide a unique and global solution. Sadleir and colleagues 

[30] adopted the idea of maximizing the average current density in the ROI by shaping the 

currents applied through an array of 19 large patch electrodes (22 cm2 contact area). The 

authors applied safety constraints on the current in the non-ROI regions and included the 

capability of having extra-cranial electrodes; however, their approach also fails to find a 

unique and global solution, which limits its generalizability.

A variety of problem formulations that do provide unique and global stimulus patterns have 

been studied by Dmochowski and colleagues [31]. The authors found optimal electrode 

stimulus patterns that increase either focality or intensity of the modulation in focal ROIs. 

The work by Ruffini and colleagues [32] added the flexibility of choosing a subset from a 

set of predetermined electrode locations and defining spatially extended cortical ROIs. They 

first determined electrode number and locations using a genetic algorithm and then 

optimized electrode currents using least squares. Their method used 27 potential electrode 

locations, however, the extension to arrays containing higher number of electrodes is not 

trivial due to the genetic algorithm step.

In this study, we present an alternative approach for optimization of current injection pattern 

employing multi-electrode configurations. We formulate an optimization problem that 

provides a unique1 and global current injection pattern as a solution. The proposed approach 

employs volume based ROIs, can be easily adapted to incorporate different sets of safety 

constraints, takes negligible time to compute, and relies on open source software (SCIRun 

[33], BrainStimulator [34], CVX [35]).

In what follows, we report exemplary results for four anatomical ROIs: the medial 

orbitofrontal cortex (MFC), anterior cingulate cortex (ACC), parahippocampal gyrus 

(PHCG), and precuneus (PC). These regions were chosen for evaluation because they are 

deep within the cerebral hemisphere, and are important to both cognitive and 

neurophysiological function. We then show the effect of a very large number of choices for 

the safety constraint bounds on the achievable targeting. We also compare our results to 

results from the two most similar studies in the literature: [31] by Dmochowski and 

colleagues (2011), and [32] by Ruffini and colleagues (2014).

1Theoretically, there may be multiple solutions depending on the exact choice of constraint bounds, although this is highly unlikely to 
occur.

Guler et al. Page 3

J Neural Eng. Author manuscript; available in PMC 2016 December 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Our results show that the proposed optimization approach is a good alternative to existing 

methods and may extend the capabilities and specificity of tDCS. It can readily be extended 

to allow directional targeting of multiple ROIs distributed across the entire brain at small 

computational cost and with the flexibility to add a variety of constraints to ensure safety 

and comfort for the subject.

2 Methods

In this section, we present in detail the construction and solution of the proposed 

optimization problem. We start by giving a high level description of the model used in the 

simulations. A finite element method (FEM) section describes how the current density in the 

head was estimated numerically. We then describe our optimization formulation in detail and 

briefly compare it with the two most similar existing methods, followed by a detailed 

description of a reformulation of the optimization problem which leads to a computationally 

fast solution. We conclude this section with a description of the simulation studies we report 

on in the sequel.

2.1 Realistic head model

Previously acquired multi-modal imaging data (magnetic resonance imaging (MRI), 

computed tomography (CT), and diffusion tensor imaging (DTI)) was used to generate a 

high-resolution, realistic head model. We used the software package Cleaver [36] to generate 

a tetrahedral mesh consisting of 8 million nodes and 47 million tetrahedral volume elements 

(Figure 1), with 8 modeled tissue layers (scalp, skull, CSF, grey matter (GM), white matter 

(WM), eye, internal air, and electrode sponge). Table 1 lists conductivity specifications for 

different layers in the volume conduction model.

2.2 Finite element analysis

Assuming there are no interior current sources in the head, the potential field can be 

mathematically described with Laplace's equation: ∇·σ∇ϕ = 0, σ and ϕ being tissue 

conductivity tensor (value) and electrical potential, respectively. Solving Laplace's equation 

analytically in a realistic head is intractable and thus, as has generally been done in this field, 

we approximated the electrical potential numerically using the FEM. We used the complete 

electrode model to allow the current density to vary on the electrode surface and to 

incorporate the contact impedance of 5kΩ.m2 at the electrode-scalp interface [45].

In what follows, our notation distinguishes two closely related vector variables for the array 

of electrode currents. Ĩ denotes the full electrode current array, with one entry for each 

electrode, while I denotes the array with a chosen reference electrode excluded2:

2Note that since the algebraic sum of all currents entering the head must be equal to 0, the number of free electrode current variables 
in the optimization is 1 less than the number of electrodes; here we enforce that by choosing one electrode to be the reference and 
excluding it from the optimization.
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where L is the total number of electrodes and .

Once the domain is discretized into volume elements and boundary conditions are specified, 

the unknowns are node potentials (u) and electrode potentials (U), for which a set of linear 

equations are derived from FEM (for details see [46,47]):

(1)

M is the so called global matrix and 0 is the zero vector. For computational reasons we 

explicitly computed the transfer matrix T that links the electrode current array I to node 

potentials u from (1) using an efficient lead field approach [31]:

(2)

T then is integrated into the optimization formulation to reduce the computational time 

significantly, noting that T is fixed as long as the head model remains unchanged.

2.3 Electrode current pattern optimization

We first introduce our objective and safety constraints and then describe an equivalent and 

computationally much more efficient form of the resulting constrained optimization 

problem.

2.3.1 Objective function—We assume that the ROI boundary and the desired directional 

field3 for the current density in the ROI are known. Given that, we maximize the projection 

of the induced current density J on this directional field inside the ROI:

(3)

where J(r) is the current density and d(r) is a dimensionless vector field of unit magnitude 

representing the desired direction for the current density at location r. The operator ‘□’ 

represents the vector dot product and ΩROI denotes the brain target region, which can be of 

any size and could be the union of disjoint volumes.

The objective function in (3) can be seen as a generalization of the objective function used 

by Dmochowski and colleagues in [31] to maximize the current intensity from point-like 

targets to volumetric ROIs. This choice of objective function is different from the least 

squares approaches [31, 32] used in the comparison study below, and we want to point out 

here the difference and some of the expected consequences. Specifically, in contrast to the 

3Note that the desired directions can vary freely through the ROI; for example, a likely choice would be the cortical surface normal 
through the ROI, which, given the convoluted nature of the human cortex, would lead to a highly variable directional field through the 
region.
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least squares approaches in [31,32], we specify only the desired orientation field for the 

current density in the ROI; the magnitude along that directional field is left as a free variable 

to be maximized. The comparison methods specify an explicit desired electric field in the 

ROI and in the brain, and minimize a measure of the difference (weighted least squares) 

between that desired field and the optimized result. One consequence of different objective 

function definitions is that in our approach we are not required to specify the desired 

magnitude, only the ROI and the desired directional field. Another is that the reported 

implementations of the comparison methods choose a uniform magnitude desired field in the 

ROI, implicitly penalizing for variability, while our approach allows the optimum field in the 

ROI to vary as long as the integral of the total projected current is maximized. Another is 

that our objective does not take into account the component of the optimized field normal to 

the desired directional field. On the other hand, the comparison methods implicitly penalize 

the electric field component normal to the desired field. Finally, our objective integrates over 

the ROI using the FEM basis functions, while the comparison methods use point-wise 

computation on the mesh nodes; thus we take into account differences in the volumes of the 

finite elements themselves.

2.3.2 Safety constraints—We impose three safety constraints. In order to prevent 

excessive current delivery to the brain, the current power in the brain outside the ROI is 

constrained:

(4a)

where Ωbrain represents the entire brain. Another safety constraint limits the total current 

entering the head:

(4b)

where ‘∥∥p’ represents the p-norm. Since constraint C2 (4b) may not be sufficient to prevent 

high current densities locally, especially with small electrodes, we also impose constraints 

on each individual electrode current:

(4c)

where ‘⪯’ stands for ‘element-wise less than or equal’.

2.3.3 Computationally efficient optimization formulation—With the assumption 

that the desired directional field is treated as constant within each individual volume 

element, the integrals in (3) and (4a) become weighted sums. We evaluated these integrals 

(see Appendix A) and reduced them to linear and quadratic functions of the electrode 

current array; after doing so, the overall optimization problem becomes:
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(5)

(6a)

(6b)

(6c)

We can think of w as the array of weights representing the relative importance of each 

electrode current on the directional current density in the ROI. The matrix Q links these 

electrode currents to the current power in the brain outside the ROI. The sizes of w and Q 
are L-1 × 1 and L-1 × L-1, respectively, since, as described above, the number of 

independently controlled electrodes is one less than the total number of electrodes L.

The optimization problem with the objective (5) and constraints (6a-c) is convex, and thus 

has a unique, global solution. In addition, the problem size is L – 1, which is many orders of 

magnitude smaller than the number of nodes in the mesh. By pre-calculating w and Q, we 

avoid the need to find the current density at each iteration to evaluate the objective criterion 

and constraints. Thus the problem size is small enough that we are able to simply employ 

CVX, a disciplined convex optimization solver package for Matlab [35], to compute the 

solution. Despite using such a general convex optimization solver, the execution time of an 

optimization for a given set of objectives and constraints, on a typical modern desktop 

computer, is on the order of seconds.

2.4 Simulations

We chose four anatomical ROIs, shown in Figure 2, to display exemplary results of the 

proposed method. All four ROIs were deep rather than superficial, and thus challenging as 

targets, with the PHCG ROI being significantly deeper than the other three. The desired 

directional field for all four ROIs was based on the local cortical surface normal. Since the 

size of the tetrahedral elements was significantly smaller than the thickness of the cortex, to 

determine the cortical surface normal field through the full ROI, we first computed the 

surface normal on the cortical surface and on the white matter boundary and then 

interpolated into the interior of the cortex.

In these simulations the total current entering the head was limited to 2 mA (ımax = 2 mA). 

Each individual electrode current was limited to 0.30 mA (−Imin = Imax = 0.30 mA). We 

chose these values so that maximum scalp current density was comparable to that of 
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conventional tDCS4. The current power in the brain outside the ROI was limited to 10−6 

A2/m, which was based on the literature [18].

With this set of constraints in place, we report on our investigation of the interaction 

between these constraints and optimal stimulus patterns. We carried out a study on one of 

the ROIs (MFC) in which we calculated the optimal current patterns for a wide range of 

constraint bounds. We analyzed the changes in modulation strength and maximum current 

density in the brain due to changes in the constraint bounds, leveraging the low 

computational cost of our formulation of the optimization problem.

In order to validate our methodology, we compared our results to the results from two other 

studies [31,32] that use convex formulations for optimizing dense electrode array stimulus 

patterns. We implemented two least squares methods from these studies and computed 

optimal patterns for M1 motor cortex area as the target ROI to facilitate comparisons with 

the results reported in the cited papers. In contrast to the anisotropic model used in the first 

set of simulations, we used an isotropic head model for these simulations5 because both 

comparison methods optimize and constrain the electric field while ours uses the current 

density. Isotropic conductivities ensure current density field and electric field are 

proportional to each other by a scalar conductivity value in each tissue layer and thus again 

facilitate comparison.

Because each of these three methods imposes different sets of safety constraints, as seen in 

Table 2, we adapted the following procedure to optimize the current stimulus patterns. We 

first optimized the stimulus pattern using our implementation of one of Dmochowski et al.'s 

least squares problems [31], setting the constraint bound for individual electrode currents to 

1 mA. The total injected current resulting from that solution was used to set the constraint 

bound for total injected current to 3.62 mA for the other two methods. We then solved 

Ruffini et al.'s least squares problem with these constraint bounds. To imitate the constraint 

C1 (4a) in our formulation, we set the bound on the electric power in the brain outside the 

ROI to 44.04 V2m, which was the minimum of the electric power delivered to the brain 

outside the ROI with the comparison method solutions.

We note that there are multiple optimization formulations to maximize either focality or 

intensity at the target ROI by Dmochowski and colleagues in [31]; we have implemented 

only one of the least squares approaches to compare our method with. The other least 

squares method in [31] uses only a total injected current constraint, without any constraint 

on individual electrode currents. This approach can be expected to lead to very sparse 

solutions with higher current intensities on only a few electrodes, so we concluded it is not 

an appropriate comparison method. The other two methods in [31] use point-wise rather 

than volumetric objectives; one of them, like ours, maximizes current along a desired 

direction but only at a point. Thus direct comparison with our approach would be difficult, 

and indeed our objective can be seen as an integration over an ROI volume of the objective 

4The total circumference of 7 dense array electrodes with a typical diameter of 1 cm is close to the circumference of a 5 cm × 5 cm 
patch electrode and the current is mostly concentrated at the electrode edges [16].
5Instead of varying conductivity specifications for skull, GM and WM volume elements in the head model, we assigned constant 
conductivity values (skull = 0.01, GM = 0.33, and WM = 0.142 S/m) to each of these tissue layers.
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in [31]. We also note that we only implemented the least squares step by Ruffini and 

colleagues in [32], assuming that the number and locations of the electrodes were known. 

The number and locations of the electrodes are determined in their work by their genetic 

algorithm step. Since implementations of the genetic algorithm can be highly variable, we 

felt implementing our own version and then using it in the optimization would just introduce 

confusion into the comparison.

3 Results

As described above, we first report on our optimization results for the four aforementioned 

anatomical ROIs. We then report on a comprehensive study of the effect of safety constraint 

choices on the optimal solution. Finally, we compare our method with two existing 

approaches, listed in Table 2.

3.1 Exemplary results on four ROIs

We summarize our findings for the four anatomical ROIs in Figures 3 and 4. In Figure 3, we 

show six views of the optimized results for one of the ROIs, the MFC. Panel (a) shows the 

optimized electrode current stimulus pattern, panel (b) the corresponding electrical potential 

on the scalp. Panels (c) and (d) show two visualizations of current density streamlines 

through the ROI. Panel (c) illustrates how the streamlines connect to the electrodes, while 

panel (d) shows the relationship, in the ROI, between the optimized current and the desired 

directional field, shown in pink. Since the streamlines in panel (c) do not show any current 

outside the ROI, panel (e) shows the current density on an axial slice through the ROI. Panel 

(f) visualizes the current density magnitude on the cortex. We observe from panels (e) and 

(f) that the cortical regions surrounding the ROI are exposed to much higher currents than 

the ROI, which may be pointing to the physical limitation of applying currents via scalp 

electrodes. In Figure 4, we show optimized stimulus patterns (left column) and streamlines 

through the ROI (right column) for the other three ROIs (ACC, PHCG, PC). We want to 

point out again that the streamline visualizations on panels (b), (d), and (f) show only the 

current that goes through the ROI and thus the current distribution across the entire head is 

not shown.

To provide more quantitative results, we tabulated median and peak values for current 

density magnitudes, of ROI and six tissue types for all four ROIs in Table 3. Although 

median of current density magnitude for the ROI is lower in the PHCG ROI compared to the 

other three, it is higher in the grey matter. This may be an indicator of the expected difficulty 

of targeting deeper brain structures with scalp electrodes. To more fully describe how the 

current density is distributed in the head for each ROI, we show current density magnitude 

histograms of different tissue layers in Figure 5. In more detail, each curve on a given plot 

shows the distribution of current density magnitude in the corresponding tissue type. Since 

each of the ROIs is much smaller in volume than, say, the grey matter, we normalized all the 

curves to have unit volume6 for each layer for better visualization. These plots show the 

degree to which we are able to focus current in the ROI in comparison to the surrounding 

6Sum of the stair heights in each histogram is equal to 1.
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tissues. Although there are regions in grey matter that receive higher currents than the ROI, 

the average current in the ROI is much higher than in the remaining grey matter as a whole. 

In particular we see that most of the current density in the ROI has higher magnitude than 

most of the grey matter in the MFC, ACC and PC ROIs. In contrast, the ROI and grey matter 

histograms in the PHCG are much closer together. These findings again are consistent with 

the expectation that modulation of deeper regions will be less focal than of shallower ROIs.

3.2 Effect of constraints

We chose the safety constraint bounds, as described above, to be consistent with approaches 

in the literature. However, these values are necessarily rough choices, so we leveraged the 

computational efficiency of our formulation to carry out a systematic sensitivity study of the 

effect of each constraint by solving the optimization problem repeatedly with a wide range 

of values for the bounds. We visualize the results in Figure 6 for the MFC ROI. Specifically, 

the figure shows objective function isolines as a function of individual electrode current 

bound and current power in the brain outside the ROI bound, where the total injected current 

bound was set to a constant (1 mA). The background color in the figure represents the 

maximum current density at any location in the brain, thus enabling us to detect any local 

“hot spots”. To aid the reader in interpreting this figure, we make some observations here 

about the results. First, we note that for significant portions of the constraint space, objective 

function isolines are almost parallel to one or the other of the axes. This indicates that 

relaxing the constraint bounds in those regions will have little effect; increasing the 

individual electrode current bound above the knee of a given contour, for example, will not 

improve the objective function but will cause higher peak values for the current in the brain. 

Second, both the objective function value and the maximum current density in the brain are 

sensitive to both bounds, but not in exactly the same way, suggesting that setting the bounds 

to achieve a desired value of the objective function can be done without necessarily causing 

a significant increase in the maximum current density. Third, the important region on the 

plot is an arc-shaped region going from the bottom-left corner up and to the right; in this 

region, increasing either of the constraint bounds improves the objective function. Finally, 

the sparsity of the optimal stimulus pattern and bounds for the safety constraints are closely 

related; relaxing the constraint bounds is likely to yield sparser optimal patterns. Thus, these 

results suggest that there is a region in constraint space in which we should choose the 

combination of bounds, taking into account both safety and the ability to increase potential 

modulation effect.

3.3 Comparison with other existing methods

We compared our method with two methods reported by Dmochowski and colleagues [31], 

and by Ruffini and colleagues [32]. Figure 7 shows the three optimized electrode current 

patterns on the scalp, along with the ROI. Figure 8 shows some comparisons of these three 

optimized patterns. The highest individual electrode current in magnitude differed in the 

optimal solutions (0.61, 0.75, and 0.91 mA). In addition, the total current was more 

uniformly distributed across the electrodes in Dmochowski et al.'s solution than in Ruffini et 

al.'s solution and than in Guler et al.'s solution.
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Table 4 summarizes the statistics of the optimized electric field as well as the constraint 

bounds used in each optimization. We observe that our method produced a solution that 

yielded higher average electric field in the ROI (+%17) and lower in the brain (−%60) 

compared to Dmochowski et al.'s solution. In contrast, the average electric field with our 

solution is slightly lower both in the ROI (−%14) and in the brain (−%12) compared to 

Ruffini et al.'s solution, which presumably is due to relatively low constraint bound on the 

electric power in the brain outside the ROI.

4 Discussion

In this simulation study, we formulated and solved a multi-constraint optimization problem 

on the electrode current stimulus pattern to achieve, in our computational model, precise 

targeting and polarity in dense array tDCS. Computer-based simulations on a realistic head 

model showed ROI characteristics (e.g. depth) may have a significant effect on the optimal 

patterns and the current flow in the head. We recognize that these simulations must be tested 

by experimental results that provide validation that the intended current is actually delivered 

effectively. The sensitivity study on the effect of safety constraint bounds on the optimal 

patterns showed that relaxing the constraint bounds do not necessarily improve the objective 

function. Finally, we compared our method with the other two similar methods in the 

literature and found similar optimized stimulus patterns, with slight differences due to 

presumably different problem formulations.

In our simulations, we used dense arrays consisting of electrodes much smaller than the 

patch electrodes, which may result in high current densities at the electrode edges due to 

small contact area between the electrode and the scalp [16]. To this end, we imposed 

constraints on the individual electrode currents and also used the complete electrode model 

to more accurately estimate the non-uniform current density distribution at the electrode-

scalp interface. Another approach to prevent high current densities locally would be to 

impose additional constraints on the elements closest to the electrode edges, where highest 

currents occur due to edge effect [48]. This, however, could mean imposing many more 

constraints and higher computational burden. A simpler yet more effective solution may be 

to design electrodes that distribute the current across electrode-scalp interface more 

uniformly by, for example, varying the sponge depth through the electrode [49].

Because the current flow in the head is very complex due to factors such as anatomical 

structures, tissue characteristics, electrode positions and shape [4, 50], there may be need, in 

particular settings, for additional current power constraints to prevent excessive current 

delivery to the critical regions in the brain. Although here we only constrained the current 

power in the brain outside the ROI, the optimization problem is readily capable of 

incorporating multiple critical regions, each assigned with its own safety bound, to allow the 

flexibility of defining subject-specific critical regions. As an illustration, in Figure 9, we 

added an additional constraint on the current power in the eye  to 

simulate the desire to prevent phosphenes. We observe from the two solutions that the 

current patterns differ significantly when this additional constraint is imposed on the 
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solution. The objective value reached with the additional eye constraint was 33% lower than 

the value reached without the eye constraint.

Having an optimization problem with multiple safety constraints, it is important to 

understand the influence of each on the optimal stimulus pattern. Thus, we investigated the 

effect of each constraint bound on the objective function as well as on the maximum current 

density in the brain. Because our optimization was so computationally efficient, we were 

able to solve for the best stimulus pattern repeatedly, with varying constraint bounds. Results 

showed that loose constraint bounds don't necessarily yield higher desired current in the 

ROIs but they may allow higher peak currents in the brain. Carefully chosen safety bounds 

in the presence of multiple safety constraints are important in extending the range of tDCS 

applications.

Comparing our method with two other methods in the literature, we observe the solutions 

differ somewhat due to the difference in problem formulation. Because Dmochowki and 

colleagues’ method is a least squares fitting problem, high electric field magnitudes in the 

ROI are also penalized. Thus, we observe the highest electrode current magnitude in the 

optimal pattern is 0.61 mA although individual electrode current bound was set to 1 mA. In 

Ruffini and colleagues’ method, only the electric field component along the cortical surface 

normal is considered in the least squares fitting and thus there is more flexibility due to the 

unconstrained component tangential to the cortical surface. This, we speculate, is why this 

solution has a higher maximum electrode current magnitude (0.75 mA) than Dmochowski 

and colleagues’ solution. In our method, in addition to not constraining the component of the 

current tangential to the cortical surface, we also let the magnitude of the component normal 

to the cortical surface vary, which might produce solutions with higher currents for a subset 

of the electrodes. The only consideration in our formulation is to have the direction of the 

current density match the desired directional field.

In the case where it is useful to target several regions believed to be functionally or 

anatomically connected, perhaps even with differing relative importance, the ROI may be 

defined according to a weighted mapping scheme. For example, functional connectivity 

maps can be used to weight the ROI when the target entails the whole cortical surface [32]. 

We can easily adjust our objective function to achieve this goal by weighting the desired 

directional field such that each location in the joint ROI has its own weight (ω) associated 

with it, as in (7). Adding such weights does not affect the complexity of the problem and 

enables us to assign relative importance to different parts of the ROI:

(7)

All our results consider only the directed magnitude of stimulus current in the ROI. Of 

course the real goal of tDCS is effective modulation of neural activity, not just optimizing 

control over current density localization. The relationship between local density of injected 

current and modulatory effect is complex and, to-date, not well understood. This suggests 

that our method, and our comparison to competing methods, should be tested experimentally 

to better understand the efficacy of the results. Such testing is not trivial because of both the 

Guler et al. Page 12

J Neural Eng. Author manuscript; available in PMC 2016 December 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



difficulty of defining adequate metrics of success and the need to exercise proper care in 

experimenting with the brains of human subjects, but some studies are being carried out, for 

example by using changes in TMS stimulus strength needed to obtain motor response, for 

motor cortex stimulation, under tDCS, as a surrogate for tDCS efficacy [51].

Another practical consideration is that dense array tDCS optimization schemes generally 

assume there are as many current sources available as the number of electrodes, which may 

be practically inconvenient, especially when the number of electrodes is as high as 100 or 

even larger. Thus it may be useful to develop optimization methods to find good stimulus 

patterns that use fewer current sources than electrodes. However the corresponding 

optimization problem is combinatorial and the number of configurations to check increases 

exponentially in both the number of current sources and the number of electrodes. Further 

research on how such solutions could be found using combinatorial optimization approaches 

is needed.

5 Conclusion

This study presents a novel method for calculating electrode current stimulus pattern in 

dense array tDCS that maximizes the current density along a desired directional field in the 

ROI. The proposed method provides a unique and global stimulus pattern for a given ROI 

and a desired directional field for the current density in the ROI. Simulation results on four 

anatomical ROIs suggests the difficulty of targeting deeper brain regions. Moreover, it was 

shown that increasing the constraint bounds may not improve the objective function but may 

cause higher peak values for the current density in the brain. The solutions found by our 

method and the two comparison methods appeared similar, with minor differences due to 

different objective and safety constraint choices.
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A Evaluating the integrals on a discretized domain

In this section, equivalent forms of integrals in (3) and (4a), after domain discretization, are 

derived. In linear FEM, potential field is assumed to be linear within each finite volume 

element and thus the potential at any point inside mth volume element can be written as:

(8)

where (x, y, z) is the position and am, bm, cm, dm are the linear coefficients. This linearity 

condition is satisfied at the nodes of the same element:
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(9)

where  denotes the potential at the jth node of the mth element and  is the 

position of the jth node of the mth element, for j = 1, 2, 3, 4 and m = 1, 2 · · · M, M being the 

total number of volume elements in the mesh. Rewriting the set of equations in (9) in matrix 

form, we get:

(10)

where we defined um as the vector of potentials at the nodes of mth element and Pm as the 

position matrix of the nodes of the same element. The linear coefficients can then be found 

as:

(11)

Let Am represent the last three rows of matrix . Then . Note 

that um is a subset of the potentials at all nodes of the mesh and thus um = Smu, where Sm is 

a selection matrix of size 4×N. The current density at any point r in the mth element is found 

as:

(12)

All the terms on the right hand side of (12) are independent of the position. We can drop the 

position argument of the current density and use only Jm to denote current density at any 

point inside the mth element. The fact that current density is constant within each finite 

volume element is used to find equivalent forms for the integrals in the objective function (3) 

and power constraint (4a). The objective function (3) becomes a linear function of electrode 

currents:
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(13)

where Ωm and vm denote the domain and volume of the mth finite volume element, 

respectively, and we assumed that the desired directional field is fixed through each finite 

element. Similarly, we can find an equivalent form for the power constraint (4a):

(14)

w and Q remain fixed through the optimization if the mesh, the desired directional field, and 

the ROI boundary remain unchanged. The size of w is #(electrodes)-1 × 1, and the size of Q 
is #(electrodes)-1 × #(electrodes)-1. Precalculation of w and Q before the optimization thus 

reduces the computation time significantly.
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Figure 1. 
The tetrahedral head mesh used in the simulations. An array of 126 cylindrically shaped 

electrodes (transparent gray), each with 1 cm diameter and 0.5 cm thickness, were placed on 

the scalp. A realistically shaped ROI (precuneus) is shown in red.
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Figure 2. 
Four anatomical ROIs used in the simulations: (red) medial orbitofrontal cortex (MFC), 

(blue) anterior cingulate cortex (ACC), (green) parahippocampal gyrus (PHCG), and 

(yellow) precuneus (PC).
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Figure 3. 
Optimization results for targeting MFC. (a) optimal electrode current stimulus pattern, (b) 

electrical potential field on the scalp, (c) current density streamlines through ROI, (d) current 

streamlines (rainbow colored lines) and desired directional field (pink lines) in the ROI, (e) 

current density on an axial slice through ROI, and (f) current density magnitude on the 

cortex. The colorbars in (c) and (e) are log-scaled.
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Figure 4. 
Optimization results for targeting ACC, PHCG, and PC. (left) optimal electrode stimulus 

patterns, and (right) current streamlines through ROI. The colorbars for the current 

streamlines are log-scaled.
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Figure 5. 
Current density magnitude histograms of scalp, skull, CSF, GM and ROI for all four ROIs. 

(a) MFC, (b) ACC, (c) PHCG, and (d) PC modulation, all in cortical surface normal 

direction.
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Figure 6. 
Objective function isolines as a function of constraint bounds on the individual electrode 

currents and on the current power in the brain outside the ROI. The numbers on the isolines 

represent achievable directional current density in the ROI for a given set of constraint 

bounds. Note that the vertical axis is shown as the negative log of the current power bound 

in A2/m so that the bound gets larger as we move up the axis. The background color 

represents the maximum current density in the brain, whose colorbar is shown on the right 

and is log-scaled.
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Figure 7. 
Optimized electrode stimulus patterns for targeting (a) M1 ROI in cortical surface normal 

direction, using (b) Dmochowski et al.'s, (c) Ruffini et al.'s, and (d) Guler et al.'s 

optimization formulation.
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Figure 8. 
Comparison of three optimal patterns. Top panel shows optimized currents for the electrodes 

with current magnitude higher than 0.1 mA in either of the three optimal patterns. Bottom 

panel shows the highest 20 electrode current magnitudes in each solution. Note that these 

sets of 20 ‘significant’ electrodes might differ across solutions. The residuals, i.e. sum of the 

injected current magnitudes for the remaining least significant 106 electrodes, were 1.79, 

1.50, and 1.51 mA in Dmochowski et al.'s, Ruffini et al.'s, and Guler et al.'s solution, 

respectively.
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Figure 9. 
Optimized electrode stimulus patterns (a) without and (b) with additional constraint on the 

current power in the eye.
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Table 1

The conductivity specifications for 8 tissue types in the head model.

Tissue type Conductivity (S/m) Notes

Scalp 0.33 [32, 37]

Skull min = 0.0064 (hard bone)
max = 0.0259 (soft bone)

Based on CT [38]. Linear scaling of HU units between min and max [27, 39].

CSF 1.79 [32, 37]

GM 3×3 tensors. Based on DTI [40–42].

WM 3×3 tensors. Based on DTI [40–42].

Eye 0.40 [43]

Internal air 1e-15 [31]

Electrode sponge 1.4 [44]
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Table 2

Objective and constraints for all three methods used in the comparison study.

Dmochowski et al. [31] Ruffini et al. [32] Guler et al.

Objective: Minimize least squares error between desired 
and achievable electric field in the brain

Minimize least squares error 
between desired and achievable 
electric field component normal to 
the cortex

Maximize integral of current density 
component normal to the cortex over 
the ROI

Constraints: Individual electrode currents Individual electrode currents and 
total injected current

Individual electrode currents, total 
injected current and current power in 
the brain outside ROI
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Table 3

Median (Med) and maximum (Max) current densities of different tissue types for all four ROIs (Units: A/m2).

MFC ACC PHCG PC

Tissue type Med Max Med Max Med Max Med Max

ROI 0.069 0.214 0.050 0.086 0.034 0.103 0.050 0.203

GM 0.015 0.412 0.013 0.304 0.021 0.221 0.016 0.346

WM 0.011 0.300 0.011 0.245 0.016 0.200 0.013 0.348

Scalp 0.034 10.86 0.013 10.64 0.085 8.663 0.007 9.983

Skull 0.004 0.560 0.004 0.674 0.009 0.301 0.001 0.453

CSF 0.081 7.308 0.083 1.623 0.114 3.680 0.099 0.930

Eye 0.198 0.572 0.045 0.177 0.201 0.589 0.004 0.006
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Table 4

Comparison of the statistics of electric fields optimized by our method and by the comparison methods. Mean 

value for the electric field in a particular region was calculated by integrating the electric field magnitude over 

the region, divided by the region volume. All units are V/m except where noted. The numbers with asterisk (*) 

are used as the constraint bounds for the corresponding method.

Dmochowski et al. Ruffini et al. Guler et al.

Brain

Max E 0.12 0.17 0.13

Median E 3.4E-4 1.3E-3 2.5E-4

Mean E 3.8E-3 1.7E-3 1.5E-3

Electric power (ROI excluded) (V2m) 44.04 116.46 44.04*

ROI

Mean E 0.05 0.07 0.06

Head

Max E 70.08 70.93 74.38

Highest electrode current in magnitude (mA) 0.61 0.75 0.91

Individual electrode bound (mA) 1* 1* 1*

Total injected current (mA) 3.62 3.62* 3.62*
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